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Learning Strengthens the Response
of Primary Visual Cortex to Simple Patterns

and after training with fMRI. Subjects practiced for more
than 14,000 trials during more than 20 daily training
sessions on a pattern that was oriented 45� clockwise

Christopher S. Furmanski,1,4 Denis Schluppeck,2,4

and Stephen A. Engel3,*
1HRL Laboratories
3011 Malibu Canyon Road from vertical and centered at 3.9� eccentricity. Behav-

ioral thresholds and V1 response were measured forMalibu, California 90265
2 Center for Neural Science both the practiced and unpracticed control patterns,

which included horizontal (principal) patterns at theNew York University
New York, New York 10003 trained location as well as principal and 45 degree

(oblique) patterns at two other locations in the visual3 Department of Psychology
University of California, Los Angeles field (Figure 1). Measurements of neural response were

taken from the portion of V1 that represented the partBox 951563
Los Angeles, California 90095-1563 of the visual field covered by each stimulus. Average

fMRI responses to principal and oblique patterns were
calculated at all three locations.

Although subjects practiced detection of low-contrastSummary
patterns, during scanning they performed discrimination
of high-contrast patterns. We chose this approach forTraining can significantly improve performance on

even the most basic visual tasks, such as detecting a two reasons. First, high-contrast patterns produce large
stimulus-driven fMRI responses, which maximized ourfaint patch of light or determining the orientation of a

bar (for reviews, see [1, 2]). The neural mechanisms ability to measure potential differences in response as
a function of stimulus orientation and training. Second,of visual learning, however, remain controversial. One

simple way to improve behavior is to increase the the use of discrimination allowed both the performance
of subjects and the stimuli they viewed to be held con-overall neural response to the trained stimulus by in-

creasing the number or gain of responsive neurons. stant in the pre- and post-training scanning sessions.
Changing either the stimuli or subjects’ performanceLearning of this type has been observed in other sen-

sory modalities, where training increases the number between sessions would have introduced a confound
in the design. Critically, the use of discrimination duringof receptive fields that cover the trained stimulus [3,

4]. Here, we show that visual learning can selectively scanning does not limit the interpretability of our results
(see below).increase the overall response to trained stimuli in pri-

mary visual cortex (V1). We used functional magnetic Before training, subjects were reliably better able to
detect the principal (horizontal) pattern than the obliqueresonance imaging (fMRI) to measure neural signals

before and after one month of practice at detecting (45�) pattern at the two more-central stimulus locations
(Figures 2 and 3). Similarly, V1 was reliably less respon-very low-contrast oriented patterns. Training in-

creased V1 response for practiced orientations rela- sive to the oblique pattern than to the principal pattern.
Increased behavioral and neural sensitivity to principallytive to control orientations by an average of 39%, and

the magnitude of the change in V1 correlated moder- oriented patterns relative to obliquely oriented ones has
been termed the oblique effect and has been reportedately well with the magnitude of changes in detection

performance. The elevation of V1 activity by training in many previous studies (e.g., [9–13]).
Training improved subjects’ ability to detect the prac-likely results from an increase in the number of neu-

rons responding to the trained stimulus or an increase ticed pattern, with detection thresholds (contrast
needed for 82% correct performance) improving by 17%in response gain.
on average (Figures 2 and 3). Learning was largely spe-
cific to the practiced stimulus. At the trained location,Results and Discussion
changes in thresholds were reliably smaller for the un-
trained orientation than for the trained one. LearningComparisons of single-unit data to animal and human
reduced the difference in response to the two orienta-performance suggest that detection of simple contrast
tions by roughly the same amount at the central andpatterns may depend relatively directly on the number
middle locations, but smaller effects of learning wereand gain of responsive neurons in V1, with larger re-
seen at the peripheral location.sponses producing better detection performance [5, 6].

Training increased the response of V1 to the practicedRecent results from fMRI have also linked contrast de-
pattern (Figures 2 and 3). Before learning, average signaltection performance to the amplitude of V1 response
amplitudes for the oblique pattern were 39% less than[7, 8]. Accordingly, we hypothesized that training that
for the principal pattern; after learning, responses to theimproved detection performance would increase V1 re-
two patterns were close to equal. Because fMRI signalsponse to the target.
strength and signal-to-noise ratio can vary across corti-We trained subjects to detect a low-contrast sinusoi-
cal locations and scanning sessions, we quantified ourdal pattern and measured neural activity in V1 prior to
results by comparing responses to the two orientations
gathered under the same conditions. An oblique index*Correspondence: engel@psych.ucla.edu

4These authors contributed equally to this work. was calculated for responses at each stimulus location
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Figure 2. Behavioral and Cortical Effects of Learning

(A) Average learning curve shows decreasing behavioral thresholds
for the trained oblique stimulus across days for six subjects. Thresh-
olds have been normalized by division of the threshold for the princi-
pal stimulus prior to learning. Because detection is better for the
principal stimulus (raw principal thresholds are smaller than raw
oblique thresholds), the normalized thresholds are greater than one.
The vertical bar shows an average standard error of the mean.
(B) Average fMRI responses to the 45� (green) and horizontal (red)
stimulus before and after learning for five subjects. Data were aver-

Figure 1. Methods aged from pixels in V1 that responded to the trained location during
(A) Stimuli were sinusoidal grating patches oriented obliquely, at the localizer scan. Bars indicate average standard error of the mean.
45�, or horizontally (a principal orientation). Units are percent change from a baseline defined as the mean of
(B) Stimuli were presented at one of three locations in the visual the time course. Prior to learning, the 45� stimulus generated a
field and were scaled in both size and spatial frequency to account weaker response in V1 than the horizontal stimulus. Learning abol-
for cortical magnification (see Experimental Procedures). ished this difference.
(C) A flattened representation of one subject’s visual cortex, with
responses to the localizer scan superimposed. Colors have been

smaller effects of learning were seen at the peripheralassigned to indicate the regions in cortex that are responsive to
each stimulus location in correspondence with the colors used in location.
(B). Colors were determined with the phase of response in a localizer The observed increases in V1 response correlated
scan (see Methods). The scale bar represents 1 cm. with the magnitude of the neural and perceptual learning

effects (Figure 4). To facilitate comparison, we calcu-
lated a behavioral oblique index by subtracting detec-in each scanning session by subtracting the fMRI re-

sponse amplitudes for the two orientations and then tion thresholds for the two orientations and then dividing
by the sum of these thresholds. Because smaller thresh-dividing by the sum of these amplitudes. Positive indices

reflect greater response to the horizontal than to the olds are associated with better performance, we sub-
tracted the principal from the oblique thresholds to yieldoblique stimulus, negative indices reflect the opposite,

and indices near zero reflect equal responses. The an index where greater values reflected better perfor-
mance on the principal pattern. Figure 4 plots changesoblique index measures relative responsiveness inde-

pendently of changes across scanning sessions. Be- in the behavioral oblique index against changes in the
fMRI oblique index (computed as above) across learn-cause different populations of neurons are likely re-

sponding to the two different orientations, this index ing. The reliable correlation shows that larger increases
in V1 response were indeed associated with larger in-does not relate directly to the orientation bandwidth of

individual neurons. creases in performance (which are measured as de-
creases in threshold). Some contribution to the behav-Cortical changes were relatively specific to the trained

orientation and produced a reliable decrease in the ioral oblique effect does likely arise beyond V1, however;
on average, learning equalized responses to the twooblique index at the trained location (from 0.28 to �0.06,

Figure 3). Cortical changes were also specific to the stimuli at the trained location, whereas behavioral
thresholds remained slightly different. Note further thattrained location. There was a nonsignificant trend for

the effects of learning to be smaller at the middle loca- the changes in the fMRI oblique index were larger in
absolute terms than the changes in the behavioral index.tion than at the trained, central location, and reliably
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Figure 4. Correlation between Behavior and V1 Response

A reliable correlation [t(10) � 2.2; p � .025] was observed between
changes in V1 oblique indices and changes in behavioral oblique
indices across learning. Each point represents one stimulus location
from one observer. Useful fMRI data were obtained from only five
observers, and behavior was measured at the third eccentricity for
only two of these observers, yielding a total of 12 points. Color
indicates the visual-field location at which each data point was
obtained, with red, green, and blue standing for the central, middle,
and peripheral stimulus locations, respectively.

oblique stimuli were close to equal prior to learning and
did not change reliably. These results suggest that the
changes seen in V1 were not due to some global factor,
such as arousal, that would increase signal throughout

Figure 3. Quantified Effects of Learning responding regions of visual cortex.
The amplitude of a secondary peak visible in the fMRI(A) Average behavioral thresholds for the oblique degree stimulus

(green) and the principal stimulus (red) before and after learning for time course from the central location (Figure 2) de-
six subjects. Thresholds have been normalized relative to those for creased after training. The timing of this later peak
the horizontal stimulus prior to learning. Error bars represent � one matched the stimulus timing at the middle location and
standard error (between subjects). Training reduced thresholds by a

likely reflects neural response to that stimulus. This sec-larger amount for the trained (oblique) stimulus than for the untrained
ondary response could be caused by receptive fields(principal) stimulus (18% versus 9.7%; t(5) � 2.6; p � .025; one-

tailed probabilities reported for all tests) at the trained location. The that span both stimuli, spatial blurring of the hemody-
spatial specificity of learning was measured with oblique indices namic response, noise in the localizer scan, or eye move-
calculated for each stimulus location (see text for details). For behav- ments during scanning. For example, subjects may have
ior, larger indices signify better performance on the principal stimu- occasionally fixated the middle location, thus moving
lus than on the oblique stimulus; for fMRI response, larger indices

it to the central location. The reduction in secondarysignify higher amplitude responses to the principal stimulus than to
response with learning was not specific to the practicedthe oblique stimulus. Changes in the behavioral oblique indices were

smaller for the peripheral location than the for the trained locations orientation and so could be due to changes in any of
[t(2) � 7.4; p � .01], but differences between the trained and middle these factors. Importantly, our measure of learning in the
locations did not reach significance. primary peak controlled for possible changes in factors
(B) Average oblique indices calculated from the amplitudes of the such as these because the oblique index compared
fMRI responses in V1 of five subjects. At the central location, prior

responses to the two orientations measured under theto learning, response amplitudes were larger to principal than to
exact same conditions.oblique stimuli, as indicated by a positive oblique index [t(4) � 2.9;

p � .025]. After learning, the amplitude of the oblique index was Contrast detection is likely to depend relatively di-
reduced [t(4) � 2.4; p � .05], and responses to the two stimuli were rectly upon the number and responsiveness of neurons
close to equal, as indicated by an index near zero. Some effects of that respond to a pattern [5–8], and so we expected
learning were seen at the middle location [t(4) � 1.8; p � .1], and training to increase the total response of V1 to the
less learning was seen at the peripheral location than at the central

trained stimulus. The data reported here clearly indicateone [t(4) � 2.8; p � .025].
that practicing a detection task can boost this response.(C) Average oblique indices calculated from V2/V3. No consistent

effects of learning were seen. Two types of neural change can explain our data. One
possibility is that learning could have increased firing
rates in the same neurons that responded to the trained
stimulus prior to learning, by changing either the gainGiven their different underlying scales, there is no reason

to expect changes in fMRI response to map onto or the asymptotic firing rates of responding neurons.
Alternatively, training could have shifted receptive fieldschanges in threshold with a slope of unity.

In areas V2 and V3, learning produced little observable to increase the number of neurons that respond to the
practiced stimulus. Such changes occur in somatosen-effect (Figure 3). Responses between the vertical and
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sory cortex, for example, where the number of neurons Only two prior psychophysical studies have trained
subjects in detecting gratings on a uniform field [20,preferring input from a trained finger increases with

practice [4]. In our task, neurons’ preferred orientations 21]. These studies found slightly greater reductions in
threshold—roughly 40% and 25%, respectively—thanmay have shifted toward the trained stimulus. The ob-

served changes in V1 could be produced locally or could reported here, which may in part be due to learning
during the extensive pretesting in our study (four 45 minresult from feedback from higher cortical areas.

Studies of V1 with single unit recording report different sessions over 2 days). There remains some uncertainty
over the specificity of learning with respect to orienta-neural effects of learning than those observed here [14–

16]. None of the studies reported increases in either the tion. Our data indicate that learning transfers relatively
little from a trained oblique orientation to an untrainednumber or contrast gain of neurons that respond to

the stimulus. Two studies nevertheless showed neural principal one. These results agree with one prior finding
[20], but both prior reports show some transfer betweenchanges that can potentially account for the observed

perceptual learning. In one, animals were trained to dis- a trained oblique orientation and an untrained orthogo-
nal oblique orientation [20, 21]. Because we tested onlycriminate between two orientations, a task that may rely

upon neurons that respond moderately to one of the one oblique orientation, we cannot determine the extent
to which the learning observed here can be generalizedorientations and less to the other orientation. Learning

sharpened the orientation-tuning curves of such neu- to other oblique orientations.
Subjects in our study all trained on the same obliquerons by increasing the moderate responses to the more-

preferred orientations, decreasing the responses to the orientation. Because the principal orientations, hori-
zontal and vertical, are already overrepresented in V1less-preferred orientations, and thus amplifying a signal

that could be used for discrimination [14] (but see [16]). [13–16], it is possible that training them would produce
different behavioral and neural results. Many of our sub-Similar sharpening of tuning was seen in a position dis-

crimination task [15]. jects did show some transfer of learning to the principal
orientation, however (Figure 3). The correlation we mea-The probable reason for difference between single-

unit results and our results is the difference in the trained sured between changes in the neural and behavioral
oblique indices suggests that learning at both orienta-task. Our study likely boosted the total response to the

trained stimulus because this response is used relatively tions may be reflected in V1 response.
Although subjects practiced detection of low-contrastdirectly in detection. Similarly, the single-unit studies

found neural signals to undergo changes that are likely patterns, they performed discrimination of high-contrast
patterns while fMRI measurements were made. Criti-responsible for performance in the discrimination tasks

the animals were performing. It remains possible, how- cally, the change in stimulus and task between training
and scanning does not invalidate the interpretation ofever, that the differences in methodologies (fMRI versus

single units) could account for the differences in results. our results. This is because the relative responsiveness
of neurons to different orientations (orientation tuning)Two prior imaging studies of perceptual learning in

V1 also used discrimination tasks, and they yielded con- has been shown to remain constant as contrast changes
[22, 23]. Hence, if training caused a larger relative neuralflicting results. A PET study [17] found decreases in

activity in early visual cortex after training, whereas an response to oblique patterns at threshold contrast lev-
els, then the oblique patterns will produce a larger rela-fMRI study [18] showed increases in V1 response. The

tasks used in the two studies differed considerably, tive neural response at high-contrast levels. Addition-
ally, changing tasks is not likely to change orientationhowever, and the type of discrimination that is practiced

could influence the amount and nature of plasticity seen tuning for the simple grating stimuli used here. Thus,
the simplest interpretation of our results is that detectionin V1. Subtle differences in training or task may likewise

explain differences in single-unit results [5, 7]. training strengthened neural response to the low-con-
trast oblique pattern, which in turn produced an increaseOur data do not show either an oblique effect or an

effect of learning in areas V2 and V3. The former is in response while subjects were discriminating high-
contrast oblique patterns.in agreement with macaque V2 single-unit recordings,

which failed to find reliably larger numbers of neurons Visual attention can have large effects on the fMRI
response in primary visual cortex (e.g., [24–26]), buttuned to principal orientations than to oblique ones [19].

Recent results from recordings in cats suggest that the differences in attention are not likely to explain our re-
sults. An attentional explanation of our results wouldoblique effect may be found only in simple cells [13],

which are relatively scarce in primate V2 [19]. If V2 fails to have to propose that subjects paid greater attention to
the oblique stimuli than to the principal stimuli aftershow a neural effect, how then can a behavioral oblique

effect for detection be observed? One possibility is that training. Two patterns in our data make such a scenario
unlikely. First, performance on the discrimination taskV2 neurons integrate and normalize V1 signals so that

principal orientations produce more reliable, less noisy during scanning did not reliably differ between sessions
or conditions. Because behavior was neither at ceilingspike trains than do oblique orientations but that the

average firing rates produced by the two types of stimuli nor chance levels, differences in attention would be ex-
pected to produce differences in task performance; per-do not differ. Another possibility is that only a relatively

small subset of V2 neurons carries signals relevant for formance on the oblique stimulus should have been
relatively superior after training. The nonsignificantdetection. Both accounts can explain why we did not

observe an effect of learning in V2; neither changes in trends in our data were in the opposite direction; in
the pretraining scanning sessions subjects respondedspike train reliability nor changes in a small population

of neurons will be visible in the fMRI response. correctly on 75% of the principal discrimination trials
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total trials) on each of 29 � 2 (standard deviation, s.d.) days onand 84% of the oblique discrimination trials at the central
average, spread over an average time period of 53 � 8 days.location. After training, subjects responded correctly on

80% of the principal trials and 79% of the oblique trials
fMRI Paradigm, Data Acquisition, and Analysisat the central location. Second, we saw no effect of
During scanning, subjects performed two trial mini-blocks of thetraining in V2. If our learning effects in V1 were due to
discrimination task (0 ms between trials) followed by 2.333 s of

changes in attention, then we should have observed rest. The orientation increments for each subject were fixed with
substantial effects in extrastriate cortex, where atten- pretesting data (principal mean � 2.4 � 1.2 (s.d.); oblque mean �

6.7 � 1.6), and the reference orientations (either principal or oblique)tional effects are generally larger (e.g., [27]).
alternated between mini-blocks. Successive trials were performed
at the different locations in a fixed sequence (central, middle, periph-

Conclusions eral, central ...), yielding a 25 s cycle for a given stimulus location.
Our findings, together with prior results, suggest that Examination of average raw time courses revealed that the fixed trial

order did not introduce baseline differences between conditionalearly visual cortex can reorganize in a variety of ways.
responses that affected the overall pattern of results. Subjects per-Practicing orientation discrimination, for example, may
formed 36 mini-blocks of trials per fMRI scan (BOLD imaging at 3lead to neural changes—a sharpening of orientation tun-
Tesla, TR � 2.5, TE � 45, FA � 90, voxel size � 3.25 � 3.25 � 4

ing—that strengthen the most useful signals for the task. mm) and four or five scans per session.
Practicing detection can lead to changes—an increase V1 and other early visual areas were identified by standard tech-
number or gain of responsive neurons—that strengthen niques [28–31]. Active voxels in early visual areas were identified by

a separate reference scan of high-contrast flickering checkerboardthe weak signals used to detect faint patterns. Cortex
patterns identical in size to the sinusoidal patterns. Patterns weremay be capable of enhancing precisely the neural sig-
presented sequentially for 16.66 s each, yielding a phase-encodingnals that produce greatest improvement in task perfor-
of stimulus location. fMRI data were averaged separately from re-

mance. gions of interest (ROIs) comprising voxels that responded (correla-
tion greater than 0.25) to each pattern during the reference scan

Experimental Procedures (as determined by phase of response). Regions of interest in V1
averaged 476, 421, and 761 mm3 at the central, middle, and periph-

Subjects eral locations. We were unable to separate responses from V2 and
Six subjects participated in the experiment. fMRI data from one V3 because our stimuli were presented close to the horizontal merid-
subject contained uncorrectable large artifacts due to head motion ian, which is represented at the border between these areas, and
and so were excluded from analysis. so they were treated as a single ROI. We also could not measure

responses in more anterior visual areas because increasing re-
ceptive field sizes greatly reduced signal from the reference scan.Stimuli

Average fMRI signals were computed for principal and obliqueSubjects viewed contrast patterns centered at three locations in
mini-blocks for each ROI across either 24 or 30 repetitions perthe visual field: 3.9�, 8.9�, and 20.1� eccentricity. Size and spatial
condition. Prior to averaging, the fMRI time course for each voxelfrequency were scaled for cortical magnification, with patterns sub-
was converted to a percent change score by first subtracting andtending 2.8�, 6.4�, and 14.6� of visual angle and all containing a
then dividing by the mean. Response amplitudes were measuredspatial frequency of six cycles per stimulus. Only one pattern at a
as the height of a model hemodynamic response (computed bytime was displayed. During fMRI scans, stimuli were displayed on
convolving a � function [32] with the stimulus time course) that besta rear projection screen by an LCD projector. For psychophysics,
fit the data. Separate delay parameters in the model response weresubjects viewed displays on a calibrated monitor driven by a graph-
allowed for each condition and each subject.ics card with 10 bits per gun.
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