
Azuma, R. and Furmanski, C. (2003/inpress). Evaluating label placement for augmented reality view management.
Proceedings of the International Symposium on Mixed and Augmented Reality. IEEE Compute Society Press.

Evaluating Label Placement for Augmented Reality View Management

Ronald Azuma, Chris Furmanski
HRL Laboratories, LLC

{azuma, chris}@HRL.com

Abstract
View management, a relatively new area of research in

Augmented Reality (AR) applications, is about the spatial
layout of 2D virtual annotations in the view plane. This
paper represents the first study in an actual AR
application of a specific view management task:
evaluating the placement of 2D virtual labels that
identify information about real counterparts. Here, we
objectively evaluated four different placement algorithms,
including a novel algorithm for placement based on
identifying existing clusters. The evaluation included
both a statistical analysis of traditional metrics (e.g.
counting overlaps) and an empirical user study guided by
principles from human cognition. The numerical
analysis of the three real-time algorithms revealed that
our new cluster-based method recorded the best average
placement accuracy while requiring only relatively
moderate computation time. Measures of objective
readability from the user study demonstrated that in
practice, human subjects were able to read labels fastest
with the algorithms that most quickly prevented overlap,
even if placement wasn’t ideal.

1. Motivation

One of the primary goals of Augmented Reality (AR) is
to associate virtual information with their counterparts in
the real world. While the virtual information is usually
rendered in 3D, in some applications the virtual
information may be confined to the 2D view plane. For
example, virtual annotations rendered in a head-mounted
display might be 2D labels identifying the names of
nearby buildings. The decision of where and how to draw
the annotations, to determine the spatial layout in the
view plane, is the problem of view management [5]. This
is a relatively new area of research in AR and Mixed
Reality applications.

This paper focuses on a specific problem in view
management: the placement and evaluation of 2D labels
that are associated with 3D counterparts. A basic problem
with drawing 2D labels is that the labels may obscure
important background objects or may overlap, making
them impossible to read. Figure 1 shows an example
from our test application, with the labels arranged in
randomly-chosen positions. This is a poor configuration
because many labels overlap and are unreadable. Figure 2
shows a better labeling for exactly the same situation,

where the labels were automatically repositioned by a
cluster-based method described in Section 5.

Figure 1: Initial (randomly chosen) label
p o s i t i o n s

Figure 2: Repositioned labels through cluster-
based method (red dial pattern #2)

Label placement for AR applications is not trivial.
Even for a static image, the general label placement
problem is NP-hard [7]. The number of possible label
positions grows exponentially with the number of items
to be labeled. For example, if a label can occupy one of
36 positions around an object, then for 20 objects there
are 3620 possible label positions (over 1x1031). At
interactive rates, only a few possible combinations can be
considered. Furthermore, cognitive and perceptual issues
regarding label placement for AR applications are not well
understood. For example, if the label positions are not
sufficiently temporally cohesive from frame to frame, the
user might become distracted or impaired in the ability to
read the labels [11]. Such factors require further study so
that design guidelines can be generated for effective and
practical label placement algorithms for interactive AR
applications.

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

2. Previous Work and Contribution

Traditionally, label placement research has examined
the problem of placing a large number of labels upon a
static map, where computation time is not limited. The
map-labeling bibliography [19] on the Internet has over
250 references; we will only discuss representative
approaches and the most relevant examples. Several
comprehensive surveys of the label placement problem
exist [7] [8]. Map-labeling algorithms either perform
exhaustive search or only search on a local basis [7].
Exhaustive search strategies, even with truncation
heuristics, are too slow for interactive graphic applications
except for very small examples. The exponential growth
of the search space makes such an approach impractical.
Instead, all interactive methods drastically limit the search
space through various heuristics. Such approaches are
often termed “greedy.”

One common greedy approach is to consider each object
in some order (e.g., based on priority) and set or modify
the position of that object’s label to the best location
locally available [5] [23]. Another strategy is to model
forces that “repel” adjacent labels from each other [12].
This strategy has been used in graph visualization,
pushing the graph’s nodes away from each other to
maximize legibility. Many other heuristics exist. Greedy
approaches are vulnerable to being trapped inside local
minima. In contrast, simulated annealing [17] is a
stochastic gradient descent algorithm that sometimes
allows changes to the label configuration that make
overlaps worse, rather than better. The likelihood of
accepting an increase in overlaps decreases with time,
according to an annealing schedule. The output of
simulated annealing approaches the optimal solution as
the computation time approaches infinity.

In the closest previous work to this paper, Bell et al.
develop a general view management system for
augmented and virtual reality applications that includes
heuristics for improving temporal continuity of the labels
from frame to frame [5]. This paper differs by focusing
specifically on evaluating label placement, rather than
more general view management issues. For example, the
algorithms in this paper assume all labels must be drawn
on the screen, even if overlaps result, so we can evaluate
the algorithms consistently. In contrast, more general
view management strategies would allow some labels to
be removed through prioritization, aggregation, change in
size, or transparency approaches. This paper directly and
objectively compares several label placement strategies,
including a version of the algorithm used in Bell et al.

The contribution of this paper consists of two main
parts: 1) It offers the first evaluation of different label
placement algorithms in an AR situation, including
cognitive and perceptual issues and a user study. 2) It
describes a new cluster-based label placement method and
evaluates it against the other methods.

First, we evaluated four labeling algorithms using
measurements of dynamic placement characteristics.

Traditionally, label placement has been evaluated on static
images with static criteria (ensuring visibility,
unambiguously associating a label with only one object,
aesthetic appeal, etc.) [26]. Evaluation in actual AR
applications should also include dynamic characteristics
such as label and scene motion. Section 3 describes how
such dynamic characteristics can affect the human
perceptual system. Sections 4 and 5 compare four label
placement algorithms on motion data captured from an
actual AR system, for an application specifically designed
to test labeling (Section 6). Our evaluation consists both
of collecting objective numerical measurements from the
captured motion data (Section 7) and a user study directly
comparing user performance in reading labels placed by
the algorithms (Section 8). We also have video
demonstrating the different methods operating in the AR
test application.

The second contribution is a new cluster-based labeling
algorithm. It was originally designed for an air traffic
control (ATC) visualization application, and the output of
an earlier version was shown in two previous papers
[1][3], but those papers did not describe the algorithms
and details of this method, as we do here in Section 5.
The basic approach is to identify clusters: groups of labels
and objects that overlap via a transitive relationship.
These clusters represent the current problem areas for
labeling. Then for each cluster, new sets of label positions
are stochastically generated, where each new set changes
the position of every label in the cluster simultaneously.
This simultaneous repositioning enables this method to
escape many local minima, which greedy methods tend to
get stuck inside. It also considers the temporal aspects of
the problem by avoiding moving labels unless required,
maximizing the continuity of labels across iterations.

The concept of using clusters in a label placement
strategy is not entirely new, although we have not seen
this approach done before in interactive computer graphic
applications. Non-interactive VLSI layout algorithms
have broken up the task into user-defined clusters [1][18],
but that is different from the automatic detection of
clusters in a graphics application. The label detection
papers on static maps that identify clusters use a conflict
graph approach (e.g., [16]) that identifies clusters based
upon where labels could overlap (if those positions were
chosen), while the method described here computes
clusters based upon labels and objects that actually
overlap. A conflict graph approach performs a more
thorough exploration of the search space and should
provide more accurate solutions but requires more
computation (e.g. one example required about one second
of computation time for 30 nodes and 2-4 seconds for 60
nodes, on a SPARC 5 [16]) so they may be less suitable
for interactive graphic applications. They also do not
directly address temporal continuity issues.

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

3. Evaluation issues

Effective label placement algorithms must negotiate
factors such as label visibility, position, and priority [5];
too many, unclear, or badly positioned labels may
actually negate any benefits of augmenting the display
because the viewer may become distracted or overloaded
by the display. Human performance and AR/VR view
management may be improved by experiments and a
priori guidelines based on cognitive psychology [10].

The dynamic nature of AR drastically differentiates
augmented video displays from other types of information
labeling, such as cartography (i.e., static map-making).
The need for real-time output constrains the design and
implementation of AR systems. The movement of
background and rendered images in AR displays are likely
major contributors to the effectiveness of display design
because of specific cognitive/perceptual limitations. So
even though AR displays are intended to augment human
abilities, human-centered approaches focusing on the
cognitive affects of AR displays have received little
attention. This section identifies what we believe to be
the most important characteristics to measure and study,
based upon existing knowledge from perception and
cognitive science.

Dynamic AR displays involve several related aspects of
human cognition including attention, eye movements,
and working memory systems. More specifically, we
believe the primary a priori cognitive issues unique to
AR labeling readability, outside of static type-related
characteristics such as size, contrast, and font, are the
perceived motion and relative label distance, both of
which may cause perceptual delays because of inefficient
and inadvertent eye and attentional shifts.

Perceived motion: Attention is a core process of human
cognition that actively selects and processes information
from the environment or other internal mental processes
[6]. Abrupt appearance and/or motion of objects in the
visual field will automatically draw a person’s attention
to the location of the motion [14]. Voluntary shifts of
attention can be made independently of eye movements
[22], but automatic shifts of attention typically involve
corresponding eye movements that are also automatically
drawn to moving stimuli. This is especially relevant
because the human perceptual system is most efficient at
acquiring and processing visual information while the
eyes are fixated (i.e., not moving) [20].

Automatic eye and attention shifts can occur even while
viewers attempt to perform other attention-requiring tasks.
When intentionally incorporated into displays, automatic
shifts can serve as a useful alert or an aid for detecting
novelty by drawing the user’s attention to specific
portions (e.g., suddenly appearing, flashing, or moving
elements) of the display. However, abrupt stimulus
onsets or movements can also be distracting to people,
adversely affecting human performance by unintentionally
diverting the user’s attention away from the primary task.
Such disassociations have been found in computer-based

software applications with animation and moving icons
that either inform or distract the user, depending on how
the movement is used [4]. Possible strategies to avoid
inadvertent gaze capture include rearranging the position
of all labels simultaneously (possibly by incorporating
the labels on an invisible surface that moves as a solid
structure relative to the viewer) or moving labels when
viewers move their eyes, so they won’t notice the change
(a perceptual phenomenon referred to as change blindness
[24]).

Relative label distance: The relative separation/distance
of the label from its corresponding object in the visual
scene can also contribute to the overall latency of label
reading. Human eye movements that follow lines between
a rendered/virtual label and the corresponding real-world
occur at a fairly constant rate, so scan time will linearly
scale with distance (the eye movements called smooth
pursuit movements that occur at a rate of roughly 50-70
degrees of visual angle per second [9]). Thus, the farther
the labels are away from their corresponding object, the
longer it will take the viewer to read the label.

Thus, relevant costs of optimizing label position
include label motion, label-object separation distance, and
readability (size, font, overlap, crowding/density).
Because motion has such a strong effect on the human
visual system, we hypothesized that reducing unneeded
motion of AR tags was probably the most relevant factor
in improving/reducing readability. Therefore, we decided
to explicitly measure label motion (along with traditional
measurements of overlaps and computation time).

Figure 3: Examples of individual label
p lacements

A label placement is defined by an angle and radius
away from the parent object. The text is drawn to the
right or left of the endpoint of the label line, depending
on which side the label is on (Figure 3). This improves
readability by avoiding drawing the text over the label’s
own line. For this paper, we focus specifically on motion
due to changing the angle, keeping the label radius
constant (at 30 pixels).

4. Label Placement Algorithms

A previous survey of label placement on static maps [7]
measured eight algorithms and concluded that three were
most preferable, in order of increased computation time
and solution quality: greedy depth first placement,
discrete gradient descent, and simulated annealing. We
adapted these three algorithms for AR label placement,
along with our novel cluster-based method (Section 5).

We also implemented a force-based method, similar to
those used in graph visualization, where nodes “repel”
each other through distance-based forces. However, this

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

did not work well in preventing overlaps, and it often led
to distracting oscillation problems where sets of adjacent
labels would repeatedly push and be repelled from each
other, like colliding bumper cars. Therefore this method
is not included in this paper.

All methods were controlled and evaluated by one cost
function that measures and penalizes for undesirable static
label placements. This function attempts to penalize
characteristics that make it difficult to read the labels or to
easily associate an object with its label. It encodes an a
priori guess of the factors that measure the “goodness” of
a single label placement. Specifically, the cost function
checks for labels covering each other, other objects, or
other label lines, and for label lines crossing each other.
An ideal cost is zero. Labels that cover active dial objects
(the rendered blue or red circles) add 1 to the cost. A
label that covers another label is penalized 10. A label
that covers a label line carries a cost of 2, and a label line
intersecting another label line adds 1 to the cost. The
total cost sums the costs for all labels.

These tests are performed through straightforward
geometric operations. For example, a label is seven
characters wide by two characters tall, covering a box 70
by 30 pixels. A label covers another object (label, dial,
line) if that any part of that object exists inside that box.

A label is considered to be in overlap with another
label only if it covers another label. Covering another
dial object or label line is not counted as an official
overlap. This definition is important both for our
measurements and the operation of some of the
algorithms. Covering a dial object or label line or having
lines intersecting could also be considered overlaps, but at
the density used in the test application, the greedy,
gradient descent and clustering algorithms all performed
poorly with such a definition because it reduces the
number of potential label locations that are free of
overlaps. Therefore, the overlap definition is set this way
to focus attention on the most basic problem: ensuring
labels do not cover each other.

The initial default position of all labels (shown in
Figure 1) was chosen randomly once, then used to
initialize all the algorithms.

There is a tradeoff between how often label placements
are computed and how smoothly labels transition between
two settings. Computation costs aside, a new label
placement could be computed for each frame. However,
tests with pilot stimuli showed that if a label angle
changes significantly, this “jump” in location caused
delays and errors as users have to search for the new label
position. Instead, we performed label placement at 2 Hz.
Since the rendering occured at 20 Hz, the intermediate
frames are used to linearly interpolate the label from the
initial position to the new position. The rotation direction
is picked to minimize the angle traversed. This allows
the user to follow the label from the old to the new
position; however the labels may not be at appropriate
locations during the intermediate or final frame (since the
underlying scene can change as the user changes the

viewpoint). In our test application, the viewpoint motion
was relatively slow and coherent, so the 2 Hz update rate
was an acceptable compromise.

We now briefly describe the greedy, gradient descent
and simulated annealing algorithms. The new cluster-
based method is explained in the next section.

Greedy algorithm: This is a depth first search with no
backtracking that attempts to perform the minimum
amount of work possible. At startup, the initial angles
are randomly shuffled. The 20 dials are placed one by
one in a priority order, and this order is randomly
shuffled before each placement. For each dial, we check if
its label is in overlap. If not, the label remains at its
original angle. If it overlaps, then we search the label
angles from 0 to 350 degrees in steps of 10 degrees and
accept the first one that has no overlaps. If no such
solution exists, the label remains at its original angle.

Gradient descent: Our version is similar to the gradient
descent approach in Bell et al. [5]. At startup, the initial
angles are randomly shuffled. The 20 dials are placed one
by one in a priority order, and this order is randomly
shuffled before each placement. For each dial, we
examine 36 angles (0-350 degrees in steps of 10) and find
the one that is furthest from all other labels and active
dials while also not being in overlap. We perform this
test since we did not implement the space management
code in Bell et al. We implemented the hysteresis used
in Bell et al. to reduce label motion. We compute both
the ideal location and the closest match to the previous
location. If those do not match, we use the closest and
eventually switch to the ideal after a counter exceeds a
time limit (two seconds). A true gradient descent repeats
the examination of all dials until no more improvement is
possible, but to keep this at interactive rates we only
examine each dial once per placement.

Simulated annealing: We used a fast implementation
called Adaptive Simulated Annealing (ASA) [13] that is
publicly available at www.ingber.com. Since the
annealing algorithm and cost metric are different than the
one in Christensen et al. [7], we could not use the
specified annealing schedule described there. Instead, we
experimented with the settings to find one that tended to
find a zero cost arrangement for every placement while
completing within a few seconds. The initial positions
provided to the algorithm are the ones from the previous
placement; if that position already has zero cost then ASA
will not move the labels. Otherwise, there is nothing
particular in ASA that minimizes label motion.
Simulated annealing generally requires more time to
complete than can be supported at interactive rates; it is
included here to provide a comparison against a method
that produces nearly ideal placements at all times (but at
the cost of significant label motion and CPU time).

5. Cluster-Based Method

The general strategy of our new cluster-based method is
to identify clusters of objects that mutually overlap, thus

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

allowing the algorithm to search for solutions by
simultaneously repositioning all the labels in a cluster.
This avoids being trapped in some local minima that
many other methods get stuck in because they only move
one label at a time. In many practical applications, such
as the ATC visualization example, overlap problems are
naturally grouped into such clusters. This provides a
strategy for productively constraining the search space to
attack the areas that cause the most problems.

Picking the new label locations proceeds in three steps:
computing the label overlaps (i.e., finding where the
problems are), identifying the clusters, and exploring the
search space on a cluster by cluster basis.

Step 1 (Computing overlaps): The algorithm computes
the cost of the current label configuration and identifies
which labels overlap others, as defined in Section 4.

Step 2 (Identifying clusters): A cluster is defined as a
group of objects that transitively overlap each other. For
example, say that object A overlaps object B, and object B
overlaps object C, but object A does not overlap object C.
Then A, B, and C all fall into one cluster. The algorithm
computes clusters by clearing an initial list of clusters and
then iterating through each object. If the object has
overlaps (determined by the overlap list from Step 1),
then it determines if this object already exists in a cluster
or not. If it does, then the list of objects that overlap this
object is added to the cluster list. Otherwise, a new
cluster is created and those overlapping objects are put
into the new cluster list, along with this object. After
this insertion is done, objects may exist in multiple
clusters. Therefore, the algorithm checks the cluster it
just inserted into (or created) against all other clusters. If
there are any duplications of object ID’s, then those
clusters are merged together. After all the iterations are
done, the list of clusters is sorted by the number of
objects in each cluster, so that the largest clusters are at
the start and the smallest at the end. This makes the
algorithm attack the largest clusters first. Note that the
cluster lists may not include all objects. If an object does
not overlap another object and it itself is not overlapped
by another object, then it will not exist in a cluster and
its label position will not be moved. This is important
because this avoids moving labels that are not currently
causing any problems.

Step 3 (Exploring the search space): This step
initializes the new position of each label to be the
position from the previous iteration. The algorithm
examines each cluster, in order from largest to smallest.
For each cluster, several new sets of label positions are
chosen and evaluated for all the objects in that cluster.
These parameters are adjustable, but in the current
implementation, the number of sets is 40 if there are 2 or
3 objects, and 75 for four or more objects. One of the
sets has all the labels in a default position (upper right
corner), and another set has all the labels in their current
position. This ensures that the algorithm will not choose
a new solution that has a greater cost than the current
solution. The remaining sets are chosen stochastically.

For each object, the proposed new angle is chosen
randomly. Therefore, the algorithm escapes some local
minima by moving all the labels in a cluster
simultaneously, rather than just one label at a time. Each
set of label positions is then evaluated for a total penalty
cost. This cost is the sum of all penalty costs computed
for each object in the cluster, as computed by the routine
described in Step 1. The algorithm selects the set with
the lowest overall cost and that defines the new positions
of the labels for all objects in that cluster.

The limited number of sets that are searched guarantees
that this algorithm completes in a reasonable amount of
time. But it also means that it may not find a good
solution in this iteration. However, if the underlying
objects stay in the same position, as time progresses this
algorithm has a greater likelihood of finding a good
solution. The algorithm spreads out the computation
load over time, preserving real time interaction while
progressively refining the solution.

Because the cluster method simultaneously repositions
multiple labels that have been identified as being linked
together, it is able to escape some local minima that other
greedy methods cannot improve. However, this method
does not avoid all local minima. For example, if a
cluster of problem labels is surrounded by a ring of labels
that are not in overlap, then there is no room to move the
problem labels, even if the situation is globally solvable
by moving some labels in the non-overlapping ring.

6. Testbed

The label placement algorithms were tested and
demonstrated on an AR system, which consisted of a PC
with Windows 2000, two Xeon 1.7 GHz CPU’s, an
NVIDIA Quadro4 900 XGL graphics board, a Matrox
Meteor II frame grabber, and a National Instruments PCI-
MIO-16XE-50 A/D converter. It was a video see-through
system, with video provided by a Toshiba IK-SM43H
pen camera with an 8mm lens. We used the 3rdTech
Hiball-3000 optical tracker. The real object to be labeled
was an audio mixer with an array of knobs and dials. The
background behind the mixer was colored black to ensure
the labels were easily readable. Figure 4 shows a view of
the equipment.

Figure 4: Audio box viewed by HiBall-tracked
sensor box

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

We chose a set of 20 randomly picked dials to label,
which stays the same across all motion sequences.
Twenty labels was an appropriate density, dense enough
to be difficult for the placement algorithms and human
viewers but sparse enough to allow readable solutions. If
the density was low, then every placement algorithm does
well. If the density was too high, then computation time
becomes intolerably large, so it may be more effective to
switch to different view management techniques such as
transparency, filtering and aggregation [15]. One of the
virtual dials was placed 0.2 meters in front of the plane of
the other dials (Figure 5). This was done so that motion
parallax effects would cause that dial to move around in
front of the other dials, forcing labels to change positions.

Figure 5: Oblique view of the 20 virtual dials
(in blue)

The onboard PC clock had only a 10 ms resolution, so
for accurate timing we used the A/D board’s clock, which
had a 10 microsecond resolution.

The label placement algorithms (other than ASA) could
run interactively, but to perform a controlled experiment
the algorithms had to operate on exactly the same motion
sequence. Since users could not exactly replicate real
motion across several different runs, we added the ability
to record both tracking data and background images to
RAM, which at the end of the run are saved to disk. This
allowed each algorithm to be run offline on the same
prerecorded motion. The initial label starting positions
were the same for all trials and algorithms.

Figure 6: Greedy method (red dial pattern #0)

We collected two motion sequences. In the first, the
viewing camera panned horizontally, rotating to keep the
center in view. In the second, the camera moved
vertically. Each sequence lasted 20 seconds. Examples
of placements generated by the four algorithms for the
horizontal motion sequence are in Figure 2 and Figure 6
through Figure 8. Those four images also show the four

different patterns of red dials that were the focus of the
user study. The algorithms did not attach any priority to
the red dials or treat them differently than the blue dials.

Figure 7: Gradient descent (red dial pattern #1)

Figure 8: Adaptive simulated annealing (red
dial pattern #3)

7. Numerical Evaluation

We ran each algorithm eight times, four on the
horizontal motion sequence and four on the vertical
motion sequence (one for each red button pattern). The
playback program computed several performance metrics
on these eight runs, summarized in the following tables.
Each value is given for each label placement operation.

Algorithm Min Max Median Mean
Greedy 1.1 10.3 3.7 3.6
Clustering 2.1 48.4 7.2 8.4
Gradient descent 37.3 43.9 37.9 38.0
ASA 762 5561 3663 3515

Table 1: Computation time in milliseconds

Algorithm Min Max Median Mean
None 366 558 490 482.5
Greedy 15 115 53 51.7
Clustering 0 267 6 13.4
Gradient descent 7 140 30 36.3
ASA 0 24 0 2.1

Table 2: Cost

Algorithm Min Max Median Mean
None 16 17 17 16.8
Greedy 0 4 0 0.97
Clustering 0 10 0 0.55
Gradient descent 0 8 0 0.95
ASA 0 2 0 0.03

Table 3: Number of overlaps

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

Algorithm Min Max Median Mean
Greedy 0 6 0 0.54
Clustering 0 17 2 2.2
Gradient descent 0 14 1 1.8
ASA 0 20 19 12.0

Table 4: Number of labels moved

Algorithm Min Max Median Mean
Greedy 0 1 0 0.02
Clustering 0 5 1 0.82
Gradient descent 0 11 1 1.08
ASA 0 20 15 10.4

Table 5: Number of labels moved that were not
originally in overlap

Computation time analysis: Table 1 summarizes the
computation time measurements. Greedy was faster than
clustering, which was faster than gradient descent. Greedy
was typically much faster with less dense situations (well
under one ms); it slowed down significantly given the
density in our test application. Note that our
implementation for computing overlaps was brute force,
involving O(N2) comparisons. More intelligent
approaches that partition the view space [5] could speed
up all the algorithms significantly. However, since we
shared the same cost/overlap computation subroutine
amongst all the label placement algorithms, this provided
a consistent basis for comparison.

Placement accuracy: All the tested algorithms
significantly improved the situation from the initial
condition. Whether measured by the a priori cost
function (Table 2) or by simply counting the number of
overlaps (Table 3), clustering had better average placement
scores than greedy or gradient descent. The median
number of overlaps was zero for all algorithms but
clustering’s mean was about half of greedy or gradient
descent. ASA was almost always perfect.

Motion: Table 4 and Table 5 present the motion
statistics. Greedy, clustering and gradient descent all
attempted to minimize label motion. Gradient descent
typically pushed the labels on the edge outward, which
was beneficial to placement as it left more room for the
other labels in the middle. Clustering and gradient
descent moved more labels than greedy. ASA moved
almost all the labels most of the time, even though nearly
all were not in an overlap.

The algorithms have different “settling” characteristics.
Placement can be analyzed in two phases: startup (when
the placement algorithms work to find a good placement
from the poor initial position) and maintenance (after a
good placement has been achieved and changes result
mostly from motion parallax causing the dial in front to
move around). Both greedy and ASA have a short startup
phase, while clustering and gradient descent have long
startup phases. Greedy typically reaches its best
placement almost immediately and only changes it
minimally thereafter; clustering and gradient descent work
more slowly but ultimately achieve better placements, as
measured by the cost function and counting overlaps.
This is discussed in more depth in Section 9.

Summary: Of the three algorithms that can run in real
time (greedy, clustering and gradient descent), clustering
recorded the best average placement accuracy while falling
in the middle in required computation time. However,
clustering tended to move more labels. ASA resulted in
almost perfect placements, but it was too slow for real-
time operation and caused much unneeded motion.
Greedy and ASA had the shortest “startup” times.

It should be noted that all these algorithms are
stochastic, so even with exactly the same motion
sequence and set of initial conditions, each execution of
an algorithm will generate a different output. To estimate
how much the output can vary, we used the horizontal
motion sequence and ran that twelve times each on the
greedy, clustering and gradient descent methods. Table 6
lists the mean and the standard deviation of the median
values for computation time and cost in those twelve
executions, where standard deviation is in parentheses
after the mean.

Algorithm Computation Time, in ms Cost
Greedy 3.0 (2.3) 49.7 (17.0)
Clustering 6.9 (1.5) 7.2 (4.5)
Gradient descent 38.0 (0.07) 31.9 (8.4)

Table 6: Mean and (std. dev.) of the medians

Except for gradient descent’s computation time, there
was significant variation between executions. However,
this variation was not large enough to remove the
differences between the mean results.

8. Empirical Evaluation (User Study)

The goal of this experiment was to find which of the
algorithms allowed human users to best (most quickly)
read AR data tags. By measuring the reaction times of
people reading AR labels, we hoped to experimentally
validate that user performance was well correlated with
certain algorithms. We expected that the most successful
algorithms (those that presented the most readable text in
the most expeditious manner) would produce the shortest
reaction times measured in this empirical user study. We
hypothesized that algorithms with excessive movement
(e.g., ASA) might be the most distracting, and hence,
produce the slowest reaction times.

Stimuli: Stimuli were digitized movies made from
captured video frames recorded in the AR system
described in Section 6. Video images were of a multi-dial
piece of audio equipment, shown in Figure 1, that was
augmented with computer rendered tags and dials. Each
movie segment was either a vertical or horizontal back-
and-forth pan lasting 20 seconds. Movies were presented
in a window sized at 640x480 pixels, subtending
approximately 24.2 x 19.9 degrees of visual angle.
Movies were captured and played at 20 frames per second.

Virtual objects that augmented the display consisted of
19 dial faces that appeared in the same depth plane as the
actual dial face, and one “occluding” dial was rendered

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

20cm closer to the camera/viewer (see Figure 5). Because
this “occluding” dial was rendered in a depth plane closer
to the viewer, the panning movement caused motion
parallax that caused ongoing label replacement.

Design: This experiment tested the effectiveness of four
types of algorithms in a classic within-subject design
(each subject experienced all conditions). Each trial in the
experiment was defined by the algorithm type [Adaptive
Simulated Annealing (ASA), Greedy (G), Gradient
Descent (GD), Clustering (C), and None (N)], panning
direction [Vertical (V), and Horizontal (H)], and four
patterns of red target buttons (see Figure 2 and Figure 6 -
Figure 8), for a total of 40 unique trial types.

Across all trials, the presentation order of each stimulus
was counterbalanced using a modified Latin-Square (a
method of balancing the distribution of trial types to
guarantee each trial type occurred equally often following
any other trial type).

The experiment consisted of 2 practice trials (used to
familiarize the subjects with the task; these trials were not
included in the analyses), followed by 50 experimental
trials (all 40 of the unique trial types plus 10 trials that
repeated the first 10 trials in order to complete the
counterbalancing ordering). Since the key experimental
factor was the algorithm type, varying the panning
direction and button patterns simply added diversity in an
attempt to prevent boredom in subjects. In the final
analysis, we collapsed across button pattern and panning
direction, so that we collected 10 repetitions of each
algorithm condition (ASA, G, GD, C and N). While
there was a difference in mean reaction time between the
vertical and horizontal motion trials, this collapse did not
affect the overall pattern of effects.

Procedure: Subjects were instructed to read aloud the
top line of each data tag associated with a red target dial.
There were four red dials in each stimulus. For each trial,
the data tags were selected randomly without replacement
from a pool of thirty 7-letter words. Subjects were
instructed to perform the task as quickly as possible,
while maintaining the highest level of accuracy, thus
focusing on accuracy instead of speed.

Each trial was initiated with the subject’s key press and
terminated by another key press, when they had finished
reading the last label. The PC recorded the reaction time.
Experimenters scored the correctness of each trial by hand.
Feedback was not provided.

Participants were 6 members of the research staff with
little or no exposure to stimuli nor extensive interaction
with AR displays.

Analysis: Reaction times (RT) were collected for each
subject across the 50 experimental trials. RT were
averaged together for each subject, for each condition for
only those trials that were answered correctly (by correctly
reading all four labels). Also, the first 10 trials (2 trials
for each condition) were excluded to reduce the variance
cased by practice (the first two trials were on average 25%
slower than the following 8 trials). Mean RT for subjects,
averaged across all correct trials and all conditions, ranged

from 5.95s to 8.17s (mean 7.15s, SD=0.78s). In order to
increase the statistical power, between subject variability
was reduced by normalizing (dividing) all of the RT for
each subject by the mean RT of the fastest condition. In
all cases, ASA was the fastest condition (mean ASA RT
were 5.32s, SD=1.03s).

0

0.5

1

1.5

2

2.5

ASA G C GD N
Condition

Re
sp

on
se

 T
im

e (
N

or
m

al
ize

d
)

Figure 9: Normalized response times (seconds)
for 6 subjects for 5 algorithm patterns

Results: The carefully-designed within-subjects design,
numerous trials, and robust differences in reaction times
led to reliable results despite the small sample size (6
subjects). Figure 9 displays the reaction times for the
five different algorithm conditions for all subjects. Bars
are the mean RT, averaged across 6 subjects after
normalizing each subject’s RT by his or her own mean
ASA RT (see previous paragraph titled Analysis for
rationale). Error bars for all plots are +/- one standard
error (STD/÷n). Planned pairwise T-tests were performed
for the statistical analyses presented below.

These data indicate that subjects were reliably fastest for
reading labels with the ASA algorithm (p<0.0005,
t(46)=3.83), and reliably slowest for no (N) placement
algorithm (p<<0.0001, t(46)>>100). GD was reliably
slower than ASA, G, and C (p<0.05, t(46)=2.19). There
was a trend for G to be faster than C, but the difference
was not reliable (p>0.05, t(46)=0.32).

.

0

20

40

60

80

100

ASA G C GD N
Condition

Pe
rf

or
m

an
ce

 (%
 C

or
re

ct
)

Figure 10: Task performance for 6 subjects for
5 algorithm patterns

Figure 10 shows the performance (%correct) for the
different conditions across all subjects.

9. General Discussion

At first glance the patterns of RT in Figure 9 were
surprising, for several reasons. First, we expected a
parallel between the behavioral measures of RT plotted in

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

Figure 9, and some of the metrics outlined in Table 1
through Table 6. There was no clear relationship between
our calculated cost or label-movement metrics. Second,
because we thought motion would be a major factor, we
expected algorithms that contained the most movement,
such as ASA, to yield the slowest RT. As it turned out,
ASA, the algorithm that had the most total motion,
resulted in the fastest RT.

Several alternative hypotheses are feasible. For
example, our RT measure might not have been sensitive
enough to appropriately capture motion’s effect on reading
speed.

It seemed conceivable that other factors besides motion
may have played a bigger role in altering subjects’
behavioral performance. Furthermore, the numerical
evaluation in Section 7 took all 20 dials/labels into
account for the entire 20 seconds of recorded data, while
the perceptual reading task only dealt with a subset of
four dials and subjects typically completed the task
within 7 seconds. Therefore, we reanalyzed the numerical
analysis, focusing on the number of overlaps that occurred
for just the four target labels across the first 10 seconds of
each trial (the mean RT for all conditions was about 7.2
seconds).

Figure 11 shows the average number of label overlaps
involving only the labels for the 4 red dials for each
algorithm plotted as a function of time. On average, the
fact that C and GD continued to have overlapped labels
within the first 5 seconds of the trials suggests that
overlapping labels may play the dominant role in how
quickly subjects could read all the labels.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
Time (seconds)

Av
er

ag
e N

um
be

r o
f O

ve
rla

ps G C

GD ASA

Figure 11: Number of label overlaps for only
the target (red) dials plotted as a function of

time for 4 algorithms

Figure 12 plots the average number of label overlaps for
all labels (not just the ones for the 4 red dials), for the
entire 20 seconds. For the majority of the sequence (after
the 3 second mark), C usually had fewer average overlaps
than G or GD. This explains why C had better scores in
placement accuracy than G or GD as measured in Section
7. However, G and ASA had a fewer average number of
overlaps during the first few seconds. GD and C have a
much longer startup phase than G and ASA. During
startup, both GD and C created more overlaps but
eventually found a better overall placement (as scored by
average number of overlaps or the cost function) than G.

0

1

2

3

4

5

6

7

0.5 2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5
Time (seconds)

Av
er

ag
e N

um
be

r o
f O

ve
rla

ps G C

GD ASA

Figure 12: Number of label overlaps for all
dials plotted as a function of time for 4

a l g o r i t h m s

If overlaps are the major determining factor in the
readability of labels, then this suggests that the choice of
label placement strategy may depend on what the AR
application does. If an application generates situations
similar to the “maintenance” phase (e.g. when the user
studies an object, does not translate much, or the real
objects are far away, as in an outdoor application), then
perhaps clustering is a good approach. However, if the
AR application spends most of its time in the “startup”
phase (e.g., the user viewpoint or real world situation
often changes dramatically), then perhaps the better
strategy is embodied in the greedy method: reach a “best
guess” quickly without looking for better overall
solutions.

10. Future Work

Traditionally, label placement research focused on static
mappings: placing labels once over a static background.
Such research has been applied to labeling maps that are
generated dynamically, but there may not be any
similarities between the current map and the next, and
generally a few seconds are available to label each map
[21]. In contrast, interactive computer graphic
applications are a new application area for label placement
algorithms, where the 2-D screen positions of the objects
to be labeled often exhibit strong temporal coherence from
frame to frame. This coherence and interactive update rate
suggest areas for future work.

First, a series of experiments could be run to more
specifically examine and quantify the individual cognitive
and perceptual issues associated with placing and moving
labels. Topics include line crossing, label line length,
motion-based distraction, and at what rate placements
should be performed. Motion may affect other aspects of
AR applications not measured by our user study.
Eventually these could result in a new, validated cost
metric that can guide the development of new placement
algorithms for AR applications.

Second, there is an opportunity to develop new
algorithms that take advantage of the temporal coherence
inherent in interactive applications. For example, a label
placement method might identify better solutions by

DRAFT – NOT YET FINAL VERSION!

DRAFT – NOT YET FINAL VERSION!

considering not just where the labels should go in the
current frame but also where they should be in future
frames. If the application can accurately predict the future
positions of the objects to be labeled, it could optimize
label placement across the entire motion sequence. One
such strategy would be to identify an initial configuration
that reduces the number of labels that have to be moved.
However, this approach assumes accurate prediction of the
future state (including head, hand and object locations)
and requires much more computation. Such an approach
would have to be tuned to a particular application to be
effective. For example, predicting the future state of
aircraft in an ATC application is different from predicting
head and object motion in an AR application.

Third, a user can only read a few labels at any given
instant. If the system knew exactly which ones those
were, perhaps through eye tracking, a label placement
algorithm could set priorities on certain labels to ensure
those are easily readable, even at the cost of worse
placements on the other labels.

11. Acknowledgments

Raytheon Company funded the development of the
cluster-based approach. We thank David Bloomstran,
Gene Opittek, Fred Messina, Thomas Briere, Ken Arkind
and Ed Stevens of Raytheon Company for their support.
Howard Neely, Ron Sarfaty and Luis Murdock helped
with the video recording. Mike Daily provided guidance
and support.

12. References

[1] Areibi, S., Thompson, M. and Vannelli, A. A Clustering
Utility Based Approach for ASIC Design. Proc. IEEE
ASIC/SOC Conf. (2001, Arlington, VA), pp. 248-252.
[2] Azuma, R., Neely III, H. Daily, M., and Correa, M..
Visualization of Conflicts and Resolutions in a “Free Flight”
Scenario. Proc. IEEE Visualization (24-29 Oct. 1999, San
Francisco), pp. 433-436.
[3] Azuma, R., Neely III, H., Daily, M., and Geiss, R..
Visualization Tools for Free Flight Air-Traffic Management.
IEEE Comp. Graph. & Apps 20, 5 (Sept/Oct 2000), pp. 32-36.
[4] Bartram, L., Ware, C., and Calvert, T. Moving Icons,
Detection and Distraction. Proc. Interact 2001, (9-13 July
2001, Tokyo).
[5] Bell, B., Feiner, S., and Höllerer, T. View Management for
Virtual and Augmented Reality. Proc. Symp. on User
Interface Software and Technology (11-14 Nov. 2001,
Orlando, FL), pp. 101-110.
[6] Broadbent, D. E. (1958). Perception and Communication.
London: Pergamon.
[7] Christensen, J., Marks, J. and Shieber, S. Labeling Point
Features on Maps and Diagrams. Technical report TR-25-92,
Center for research in computing technology, Harvard
Unive r s i ty , 1992 . http://www.eecs.harvard.edu
/~shieber/papers-date.html

[8] Christensen, J, Marks J., and Shieber, S. An Empirical
Study of Algorithms for Point-Feature Label Placement. ACM
Trans. on Graphics 14, 3 (July 1995), pp. 203-232.
[9] Eckmiller, R., and Bauswein, E.. Smooth pursuit eye
movements. Progress in Brain Research 64 (1986), pp. 313-
323.
[10] Furmanski, C, Azuma, R, and Daily, M. Augmented-
reality visualizations guided by cognition: Perceptual
heuristics for combining visible and invisible information.
Proc. IEEE/ACM Int’l Symp. Mixed and Augmented Reality.
(30 Sept. – 1 Oct. 2002, Darmstadt, Germany), pp. 215-224.
[11] Granaas, M., McKay, T.D., Laham, R.D., Hurt, L.D., Juola,
J.F. Reading Moving Text on a CRT Screen. Human Factors
26, 1 (1984), pp. 97-104.
[1 2] Hirsch, S.A. An Algorithm for Automatic Name
Placement Around Point Data. The American Cartographer
9, 1 (1982), pp. 5-17.
[1 3] Ingber, L. Very Fast Simulated Re-annealing.
Mathematical Computer Modelling 12 (1989), pp. 967-973.
[14] Jonides, J., and Yantis, S. Uniqueness of abrupt visual
onset in capturing attention. Perception and Psychophysics
43 (1988) pp. 346-354.
[15] Julier, S., Lanzagorta, M., Baillot, Y., Rosenblum, L.,
Feiner, S., Höllerer, T., Sestito, S., Information Filtering for
Mobile Augmented Reality. Proc. IEEE/ACM Int’l Symp.
Augmented Reality (5-6 Oct. 2000, Munich), pp. 3-11.
[16] Kakoulis, K.G. and Tollis, I.G. A Unified Approach to
Labeling Graphical Features. Proc. ACM 14th Symp.
Computational Geometry (7-10 June 1998, Minneapolis,
MN), pp. 347-356.
[1 7] Kirkpatrick, S., Gelatt Jr., C.D., and Vecchi, M.P.
Optimization by Simulated Annealing. Science 220 (May
1983), pp. 671-680.
[18] Mallela, S. and Grover, L.K. Clustering Based Simulated
Annealing for Standard Cell Placement. Proc. Design
Automation Conference (DAC ’88) (1988, Los Alamitos, CA),
pp. 312-317.
[1 9] The Map-Labeling Bibliography. http://www.math-
inf.uni-greifswald.de/map-labeling/bibliography/
[2 0] Matin, E. Saccadic suppression: a review and an
analysis. Psychological Bulletin 81 (1974), pp. 889-917.
[21] Petzold, I., Plümer, L. and Heber, M. Label Placement for
Dynamically Generated Screen Images. Proc. 19th Int’l
Cartographic Conference (ICA ’99) (1999, Ottawa, Canada),
pp. 893-903.
[22] Posner, M.I. Orienting of attention. Quarterly Journal o f
Experimental Psychology 32 (1980), pp. 3-25.
[23] Pritt, M. Method and apparatus for the placement of
annotations on a display without overlap. US patent
5,689,717 (Nov. 18, 1997).
[24] Simons, D. J. Current Approaches to Change Blindness.
Visual Cognition 7 (2000), pp. 1-15.
[25] Strijk, T, and van Kreveld, M. Practical Extensions of
Point Labeling in the Slider Model. Proc. 7th Symp. Advances
in Geographic Information Systems (5-6 Nov. 1999, Kansas
City, MO), pp. 47-52.
[26] van Dijk, S., van Kreveld, M., Strijk, T., and Wolff, A.
Towards an Evaluation of Quality for Label Placement
Methods. Technical Report UU-CS-2001-43. Dept. of
Computer Science, Utrecht University, 2001.

